Carbon Management Technology Klaus S. Lackner Columbia University October 2005

Energy, Wealth, Economic Growth

EIA Data 2002

Today's Energy Infrastructure

- All fossil energy
- plus a little hydro and nuclear energy
- plus a very little renewable energy

Today's technology cannot support a world population of 10 billion people striving for a living standard taken for granted in the developed nations

Resource Will Not Run Out

	Consumption				Resource	Additional
	1860-1994	1994	Reserves	Resources ^b	base ^c	occurrences
Oil						
Conventional	103	3.21	150	145	295	
Unconventional	6	0.16	183	336	519	1,824
Natural gas						
Conventionald	48	1.87	141	279	420	
Unconventional	_		192	258	450	387
Clathrates			· · · · ·		_	18,759
Coal	134	2.16	1,003	2,397	3,400	2,846
Total fossil occurrences	291	7.40	1,669	3,415	5,084	23,815

Table 9 Aggregation of global fossil energy sources-all occurrences, in Gtoe^a

^aSources: Historial consumption (46). Reserves, resources, and occurrences, see Tables 2-8.

– negligible volumes.

^bReserves to be discovered or resources developed to resources.

^cResource base is the sum of reserves and resources.

^dIncludes natural gas liquids.

H.H. Rogner, 1997

Rogner 1997

Fossil fuels are fungible

The hydrogen economy cannot run on electricity

There are no hydrogen wells

Tar, coal, shale and biomass could support a hydrogen economy.

Wind, photovoltaics and nuclear energy cannot.

Price Ranges for Raw Fossil Energy Resources

A Triad of Large Scale Options backed by a multitude of opportunities

- Solar
 - Cost reduction and mass-manufacture
- Nuclear
 - Cost, waste, safety and security
- Fossil Energy
 - Zero emission, carbon storage and interconvertibility

Markets will drive efficiency, conservation and alternative energy

Capture from power plants, cement, steel, refineries, etc.

Capture from air

Permanent & safe disposal

Geological Storage Mineral carbonate disposal

Dividing The Fossil Carbon Pie

550 ppm

Removing the Carbon Constraint

Current Emissions: 6Gt/year

Underground Injection

Rockville Quarry

$Mg_{3}Si_{2}O_{5}(OH)_{4} + 3CO_{2}(g) \rightarrow 3MgCO_{3} + 2SiO_{2} + 2H_{2}O(I) + 63kJ/mol CO_{2}$

Magnesium resources that far exceed world fossil fuel supplies

Carbon makes a better fuel cell

 $C + O_2 \rightarrow CO_2$ no change in mole volume entropy stays constant $\Delta G = \Delta H$

2H₂ + O₂ → 2H₂O large reduction in mole volume entropy decreases in reactants made up by heat transfer to surroundings $\Delta \mathbf{G} < \Delta \mathbf{H}$

Decarbonizing Energy Carriers

- All Electric Economy
 - Stationary uses
- Hydrogen Economy
 - Heating and transportation
- Extraction of CO₂ from Air
 - Biomass
 - Chemical Extraction

*Air Extraction can compensate for CO*₂ *emissions anywhere*

 $2NaOH + CO_2 \rightarrow Na_2CO_3$

Art Courtesy Stonehaven CCS, Montreal

Wind area that carries 10 kW

0.2 m² for CO₂ Wind area that carries 22 tons of CO₂ per year

50 cents/ton of CO_2 for contacting

80 m²

for Wind Energy

Materially Closed Energy Cycles CO_2 **0**₂ CO_2 H_2 $H_2 CH_2$ Energy Source Energy Consumei H_2O H_2O

Roles of Different Energy Carriers

Connecting Sources to Carriers Carriers to Consumers

